The Father, Son and Cholix Toxin: The Third Member of the DT Group Mono-ADP-Ribosyltransferase Toxin Family

نویسندگان

  • Miguel R. Lugo
  • A. Rod Merrill
  • Ken Teter
چکیده

The cholix toxin gene (chxA) was first identified in V. cholerae strains in 2007, and the protein was identified by bioinformatics analysis in 2008. It was identified as the third member of the diphtheria toxin group of mono-ADP-ribosyltransferase toxins along with P. aeruginosa exotoxin A and C. diphtheriae diphtheria toxin. Our group determined the structure of the full-length, three-domain cholix toxin at 2.1 Å and its C-terminal catalytic domain (cholixc) at 1.25 Å resolution. We showed that cholix toxin is specific for elongation factor 2 (diphthamide residue), similar to exotoxin A and diphtheria toxin. Cholix toxin possesses molecular features required for infection of eukaryotes by receptor-mediated endocytosis, translocation to the host cytoplasm and inhibition of protein synthesis. More recently, we also solved the structure of full-length cholix toxin in complex with NAD+ and proposed a new kinetic model for cholix enzyme activity. In addition, we have taken a computational approach that revealed some important properties of the NAD+-binding pocket at the residue level, including the role of crystallographic water molecules in the NAD+ substrate interaction. We developed a pharmacophore model of cholix toxin, which revealed a cationic feature in the side chain of cholix toxin active-site inhibitors that may determine the active pose. Notably, several recent reports have been published on the role of cholix toxin as a major virulence factor in V. cholerae (non-O1/O139 strains). Additionally, FitzGerald and coworkers prepared an immunotoxin constructed from domains II and III as a cancer treatment strategy to complement successful immunotoxins derived from P. aeruginosa exotoxin A.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Newly discovered and characterized antivirulence compounds inhibit bacterial mono-ADP-ribosyltransferase toxins.

The mono-ADP-ribosyltransferase toxins are bacterial virulence factors that contribute to many disease states in plants, animals, and humans. These toxins function as enzymes that target various host proteins and covalently attach an ADP-ribose moiety that alters target protein function. We tested compounds from a virtual screen of commercially available compounds combined with a directed poly(...

متن کامل

Human α-defensins neutralize toxins of the mono-ADP- ribosyltransferase family

Various bacterial pathogens secrete toxins, which are not only responsible for fatal pathogenesis of disease, but also facilitate evasion of host defences. One of the best-known bacterial toxin groups is the mono-ADP-ribosyltransferase family. In the present study, we demonstrate that human neutrophil α-defensins are potent inhibitors of the bacterial enzymes, particularly against DT (diphtheri...

متن کامل

Use of synthetic peptides and site-specific antibodies to localize a diphtheria toxin sequence associated with ADP-ribosyltransferase activity.

Diphtheria toxin (DT) and Pseudomonas aeruginosa exotoxin A have the same molecular mechanism of toxicity; both toxins ADP-ribosylate a modified histidine residue in elongation factor 2. To help identify amino acids involved in this reaction, sequences in DT that share homology with P. aeruginosa exotoxin A were synthesized and examined for a role in the ADP-ribosyltransferase reaction. By usin...

متن کامل

Cellular ADP-ribosyltransferase with the same mechanism of action as diphtheria toxin and Pseudomonas toxin A.

An ADP-ribosyltransferase was found in elongation factor 2 (EF-2) preparations from polyoma virus-transformed baby hamster kidney (pyBHK) cells. Like fragment A of diphtheria toxin and Pseudomonas toxin A, this eukaryotic cellular enzyme transfers [14C]adenosine from NAD+ to EF-2. However, the cellular transferase is immunologically distinct from fragment A. The transferase also can be distingu...

متن کامل

Structural basis for lack of ADP-ribosyltransferase activity in poly(ADP-ribose) polymerase-13/zinc finger antiviral protein.

The mammalian poly(ADP-ribose) polymerase (PARP) family includes ADP-ribosyltransferases with diphtheria toxin homology (ARTD). Most members have mono-ADP-ribosyltransferase activity. PARP13/ARTD13, also called zinc finger antiviral protein, has roles in viral immunity and microRNA-mediated stress responses. PARP13 features a divergent PARP homology domain missing a PARP consensus sequence moti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2015